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As the first successful technique used to detect exoplanets orbiting dis-
tant stars, the radial velocity method aims to detect a periodic Doppler shift
in a stellar spectrum due to the star’s motion along the line sight. We intro-
duce a new, mathematically rigorous approach to detect such a signal that
accounts for the smooth functional relationship of neighboring wavelengths
in the spectrum, minimizes the role of wavelength interpolation, accounts for
heteroskedastic noise and easily allows for accurate calculation of the esti-
mated radial velocity standard error. Using Hermite–Gaussian functions, we
show that the problem of detecting a Doppler shift in the spectrum can be re-
duced to linear regression in many settings. A simulation study demonstrates
that the proposed method is able to accurately estimate an individual spec-
trum’s radial velocity with precision below 0.3 m s−1, corresponding to a
Doppler shift much smaller than the size of a spectral pixel. Furthermore, the
new method outperforms the traditional cross-correlation function approach
for estimating the radial velocity by reducing the root mean squared error
up to 15 cm s−1. The proposed method is also demonstrated on a new set
of observations from the EXtreme PREcision Spectrometer (EXPRES) for
the host star 51 Pegasi, and successfully recovers estimates of the planetary
companion’s parameters that agree well with previous studies. The method is
implemented in the R package rvmethod, and supplemental Python code is
also available.

1. Introduction. The discovery of a planet orbiting the Sun-like star 51 Pegasi (Mayor
and Queloz (1995)) launched a new subfield in astronomy, the detection and characterization
of planets orbiting other main sequence stars (i.e., exoplanets). This discovery was made
using the radial velocity (RV) method (also known as the Doppler method). The RV method
aims to detect an oscillatory motion in an observed star, possibly due to the gravitational
pull of one or more orbiting planets. At each time of observation, the relative motion of the
star results in a slight rescaling of the wavelength of the stellar light; this rescaling is often
referred to as a Doppler shift.

The data for the RV method are obtained with a spectrograph and are referred to as the
stellar spectrum. The optical elements in the spectrograph disperse light from the star into
component wavelengths and focus the spectrum onto an electronic detector. The pixels in
the detector sample the stellar spectrum. The continuous stellar spectrum is imprinted with
thousands of narrow absorption lines that form when atoms and molecules in the stellar at-
mosphere of the star absorb light at specific wavelengths. The wavelength of such spectral
lines corresponds to the quantum mechanical energy level differences in the absorbing atoms
and molecules of the stellar atmosphere. As the star moves toward us or away from us, the
velocity component that is projected along our line of site (i.e., the radial velocity) produces
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a wavelength rescaling in the spectrum that is described by the Doppler equation. Overall, a
Doppler shift is a wavelength rescaling and is more readily observable at wavelengths where
spectral lines form.

All stars orbit the galaxy and will exhibit a nearly constant RV relative to the Sun. If a star
also has a planet, then the orbiting planet will exert a gravitational force on the star around
a common center of mass. By measuring this varying reflex velocity in the stellar spectrum
over time, the orbital parameters of a planetary companion can be derived.

The magnitude of the RV signal depends on several factors, including the mass of the star,
the mass of the planet, the planet’s orbital period, the shape of the orbit (i.e., eccentricity) and
the orientation of the orbital plane. Since orbits that are oriented “face-on” are tangential to
our line of site, they do not have a radial component and therefore cannot be detected with
the RV method. Fortunately, face-on orbits are a statistically rare configuration.

In the solar system, Jupiter induces a RV with a magnitude up to about 12 m s−1 for the
Sun while the lower mass Earth only induces a RV up to about 0.09 m s−1. If observed with
high spectral resolution of 1.5 × 105, one pixel on the detector spans about 500 m s−1, so
these RVs would only shift the solar spectrum by 0.024 or 0.00018 pixels, for Jupiter and
the Earth, respectively. Further complicating the detection, these tiny shifts are merely the
semiamplitudes of nearly sinusoidal RV variations with periods of about 12 years for Jupiter
and 1 year for the Earth. Because the RV signal is so tiny, compared to the speed of light,
detecting such a subpixel shift in stellar absorption features is nontrivial. The state-of-the-art
Doppler precision for the past decade has been about 1 m s−1 (Fischer et al. (2016)). This
is sufficient to detect Jupiter (with 12 years of observations) but precludes the detection of
Earth analogs around Sun-like stars. Because the RV amplitude increases with decreasing
stellar mass (all else equal), some Earth mass planets have been detected around stars that
are lower in mass than the Sun. Figure 1 shows the velocity amplitudes and orbital periods of
exoplanets detected using the RV method over the past 25 years.

The RV error budget includes instrumental errors, photon noise and velocities from within
the atmosphere of the star that introduce scatter to the center-of-mass RV (Dumusque et al.

FIG. 1. Orbital period and stellar RV semiamplitude for all exoplanets discovered with the RV method. Data
come from Exoplanets.org (Han et al. (2014)) on March 28, 2020, with a total of about 800 exoplanets. Note the
symbol of the Earth at an orbital period of 365.25 days and a velocity amplitude of approximately 0.1 m s−1 and
that analogs of the Earth were not detectable.

http://Exoplanets.org
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(2017), Halverson et al. (2016), Blackman et al. (2020)). The EXtreme PREcision Spectrom-
eter (EXPRES) (Blackman et al. (2020), Jurgenson et al. (2016), Petersburg et al. (2020))
is a newly commissioned instrument that was designed to significantly reduce instrumental
errors. The primary goal of the EXPRES instrument is to provide higher-fidelity data (high
signal-to-noise with reduced instrumental errors) and has demonstrated intrinsic instrumen-
tal measurement precision better than 0.1 m s−1 (Blackman et al. (2020)). The next critical
step for reaching Earth-detecting precision is the development of statistical techniques that
estimate RVs with high precision and are less sensitive to atmospheric velocities (Davis et al.
(2017), Dumusque, Boisse and Santos (2014), Dumusque et al. (2017), Rajpaul et al. (2015),
Rajpaul, Aigrain and Buchhave (2020)).

The traditional cross-correlation function (CCF) method (Baranne et al. (1996)) has long
been used to measure Doppler shifts in stellar spectra by minimizing a weighted dot product
between the observed spectrum and a template (Pepe et al. (2002)). Various template match-
ing algorithms have also been developed which minimize the (interpolated) sum of squared
differences between the spectrum and a template spectrum using the Doppler shift as a free
parameter (Anglada-Escudé and Butler (2012), Astudillo-Defru et al. (2015)). A variant of
the template matching approach assumes the Doppler shift is small and estimates the deriva-
tive of the spectrum from the template (Bouchy, Pepe and Queloz (2001), Dumusque (2018)).
The EXPRES analysis pipeline has implemented the CCF method as well as a higher preci-
sion forward-modeling (FM) code that makes use of a very high signal-to-noise (S/N) stellar
template to model a Doppler shift in every 2-Å segment of the observed spectrum (Petersburg
et al. (2020)).

The new method we propose for estimating the RV is designed to work well in the small
RV regime typical of orbiting exoplanets. Additionally, the proposed method is developed to
generalize well to other stars with enough discernible absorption lines. This is because the
modeling is carried out on the spectra observed for an individual star and does not require a
pre-specified template. The only interpolation that takes place in the proposed method is on a
high S/N, oversampled, template spectrum (derived from the data). Compared to the approach
of Anglada-Escudé and Butler (2012), which requires interpolation of every (low S/N) ob-
served spectrum, the numerical error introduced through interpolation is likely reduced in the
new proposed method. Perhaps most importantly, the new method simplifies the RV estima-
tion process to simple linear regression without the need for getting a nonparametric estimate
of both the template spectrum and its derivative. This allows the method to easily account
for the heteroskedastic noise in spectra. Furthermore, this simplification allows for straight-
forward statistical inference on the estimated RV without making assumptions regarding the
validity of “propagation of error” (i.e., the delta method) or other approximate estimates of
the standard error.

The proposed Hermite–Gaussian Radial Velocity (HGRV) estimation method makes use
of the well-known Hermite–Gaussian functions. These functions have been used extensively
in solving Schrodinger’s equation for models of quantum systems (Marhic (1978), Dai, Wang
and Liu (2016)) as well as in fitting emission lines in galaxy spectroscopy (Riffel (2010)). The
key contribution of this paper is that shifts of spectral lines between two spectra (e.g., due to
a Doppler shift) can be well estimated with the first Hermite–Gaussian function fitted to the
difference spectrum.

The use of the Hermite–Gaussian functions is mainly motivated by the method’s assump-
tion that absorption features are Gaussian shaped (an assumption that can be generalized).
It is important to note that large optical depth, rotational broadening, collisional broaden-
ing, stellar activity and other astrophysical effects can cause absorption features to depart
from a Gaussian shape. (The model misspecification due to this Gaussian-shape assumption
is explored in Section 3.4.)
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In Section 2 we introduce the data commonly used in the RV method, namely, stellar
spectra. We also propose an algorithm for finding absorption features in the spectrum that
will be used in the HGRV method. Section 3 includes details of the proposed HGRV method,
and simulation study results are discussed in Section 4. Section 5 then applies the method to
recently collected data of 51 Pegasi by EXPRES. A discussion is provided in Section 6, and
we conclude in Section 7.

2. Absorption feature finding algorithm. A small section of the Sun’s spectrum, as
collected by the National Solar Observatory (NSO) (Rimmele and Radick (1998)), is shown
in Figure 2. In general, such a spectrum gives a representation of the relative brightness
(hereafter referred to as normalized flux1) as a function of wavelength. The narrow dips in the
normalized flux are spectral absorption features which have variable intensity and frequent
blending with neighboring features. In the (unrealistic) situation of these absorption features
not being present, the remaining spectrum is referred to as the continuum.

The blackbody spectrum (Planck (1901)), together with the instrumental effect, often re-
ferred to as the blaze function, lead to a continuum that is not flat in the raw spectrum.
However, various normalization techniques have been developed to correct for these effects
(e.g., Xu et al. (2019), Petersburg et al. (2020)). A spectrum where the continuum has been
normalized (i.e., flattened with a maximum amplitude of one plus noise) is hereafter referred
to as a normalized spectrum. Figure 2 is an example of such a normalized spectrum.

We define the template spectrum of a star, τ , to be its noiseless, normalized spectrum with
no instrumental or astrophysical effects (e.g., activity such as spots). Furthermore, we define
the difference flux to be the difference between a single observed normalized spectrum and
this template. An important characteristic of the HGRV method is that, rather than modeling
a Doppler shift in the spectrum as a change in the explanatory variable (wavelength) as the
CCF method does, we can model the difference in normalized flux caused by the Doppler
shift. This characteristic is present in various other RV detection methods (Bouchy, Pepe
and Queloz (2001), Rajpaul, Aigrain and Buchhave (2020)), but it is implemented rather
differently with our proposed method.

Since a Doppler shift only rescales the wavelength axis, there is little RV information in
the normalized continuum. Most of the information for small Doppler shifts comes from the
high-derivative regions of spectral lines, so identification of the absorption features in a given
spectrum is the first step for the HGRV method.

The locations, depths and degree of blending of absorption features depend on the stellar
parameters and chemical composition of the star and, therefore, vary from star to star. The
HGRV method involves modeling individual absorption features, so an algorithm is needed

FIG. 2. A subset of the NSO spectrum of the Sun between 5665 and 5674 Å.

1Throughout this paper we acknowledge that what we refer to as “flux” is not a true physical flux.
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that not only identifies the central wavelength at which each feature occurs but also the wave-
length bounds that contain the feature. Were all absorption features to be well separated, these
wavelength bounds would nearly be symmetric about the central wavelengths with a nearly
constant width. However, since blends are very common, this is not the case in practice.

Designing the HGRV method to generalize across stars motivates the use of an algorithm
for identifying absorption feature wavelength bounds in a way that can adapt to different
spectra. The proposed absorption feature finding algorithm is a statistically motivated heuris-
tic algorithm. The overarching goal is to find wavelength windows of absorption features, not
to perform any statistical inference on them.

The algorithm has two main sequential steps: (i) identify local minima that are likely to be
absorption lines and (ii) proceed outward from each local minimum until the normalized flux
flattens out. This algorithm is detailed in Section 1 of the Supplementary Material (Holzer
et al. (2021)) as Algorithm 1 and is illustrated with the flowchart shown in Figure 3. This
algorithm requires three tuning parameters: a wavelength window size m in units of pixel
count and significance levels α, η where η ≥ α. For a more thorough motivation of this
algorithm as well as a more detailed overview of the steps involved, see Section 1 of the
Supplementary Material (Holzer et al. (2021)).

This algorithm was empirically evaluated using the NSO spectrum. After the step-by-step
optimization of the three tuning parameters described in Section 1 of the Supplementary
Material (Holzer et al. (2021)), we found that m = 25, α = 0.01, and η = 0.05 found the
most absorption features. Furthermore, we visually identified no false positives remaining
after eliminating features with a line depth less than 0.015. A subset of the absorption features
found in the NSO spectrum are shown in Figure 4.

To estimate the false-positive rate of this algorithm, we considered the NSO spectrum be-
tween 5000 and 6000 Å and replaced the normalized flux axis with a flat 500 S/N simulation
20 independent times. See Sections 3.5 and 4.1 for details on how we estimate a template
spectrum with this level of S/N and which we use in the absorption feature finder (AFF) al-
gorithm. Applying the AFF algorithm to these simulations with parameters m = 25, α = 0.01
and η = 0.05 gave a total of 55 detected features. Since the spectra did not have any absorp-
tion features, this approximates the false positive rate as one absorption feature per 363 Å.
Additionally, the line depths of these 55 false features had mean 0.0046, standard deviation
0.0018 and maximum 0.0098 so that all the false lines would be eliminated with the min-
imum line depth parameter set to 0.015. Note that for spectra with either different S/N or
resolution m, α, η, and the minimum line depth may need to be adjusted (e.g., a lower S/N or
resolution may need higher significance levels or a higher minimum line depth). We recom-
mend setting m to be approximately 25 × R

2×106 , where R is the resolution of the spectrum

and the minimum line depth to be approximately 0.015 × 500
S/N . This recommended threshold

is, in part, motivated by the idea that avoiding false lines, which can corrupt the RV estimate,
may be more beneficial than detecting every true line. For details on this recommendation,
see Section 1 of the Supplementary Material (Holzer et al. (2021)).

In addition, we applied the AFF algorithm directly to the NSO spectrum between 5000 and
6000 Å. We found that the wavelength bounds given by the algorithm contained 64.3% of the
spectrum but accounted for 97.7% of the mean squared deviations from 1.0 of the normalized
flux. The remaining 2.3% was mostly due to occasional absorption features whose overall
shape, due to line blends, seemed to contribute to the algorithm missing them. For some
additional plots associated with these results, see Section 1 of the Supplementary Material
(Holzer et al. (2021)).

The proposed algorithm may have difficulty distinguishing two spectral lines that are
strongly blended together because the slope of the normalized flux may not flatten out be-
tween the two lines. Depending on the S/N of the spectrum, it may not be able to find small
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FIG. 3. Absorption feature finder flowchart for Algorithm 1 provided in Section 1 of the Supplementary Material
(Holzer et al. (2021)). The algorithm takes a (potentially high S/N) normalized spectrum and a tuning parameter
m that represents the number of pixels to consider at a time. The algorithm begins at the left-most pixel and
proceeds to the right until it has reached a pixel that represents a statistically significant minimum (a minimum
that is likely to not just be due to noise). At this point the algorithm proceeds outward in both directions until the
spectrum (m pixels further outward) flattens out. The bounds of the detected absorption feature are stored, and
the algorithm proceeds to the right, again looking for a statistically significant minimum.

features, as the noise would reduce the statistical significance of the left and right slopes. The
lower the S/N is, the narrower the wavelength bounds will be for each detected absorption
feature. This is because, as we move outward from the central wavelength of a feature, the
slope eventually decreases in magnitude and becomes statistically insignificant sooner in the
presence of more noise. We find that, as long as the spectrum has a S/N above 500, the re-
sults of our algorithm are stable whether or not one accounts for the heteroskedastic nature
of the noise. We use the estimated template spectrum (described in Section 3.5) in the AFF
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FIG. 4. Results of using the absorption feature finder algorithm on the NSO Spectrum. Red horizontal lines
show the wavelength windows found to correspond to individual absorption features.

algorithm, and demonstrate in Section 4.1 that the template has a S/N above 500 as long as
there are at least 11 observed spectra provided.

3. Hermite–Gaussian RV method. We now introduce the HGRV method by first con-
sidering the difference imposed on a Gaussian by a multiplicative shift of its argument. We
introduce a theorem that quantifies the approximation error made by using only the first-
degree Hermite–Gaussian function to model this difference and provide the proof through
four lemmas (the proofs of which can be found in Section 2 of the Supplementary Material
(Holzer et al. (2021)). We then show that, in the context of stellar spectroscopy, this approx-
imation error is small and the coefficient of the first-degree Hermite–Gaussian function is
nearly a constant multiple of the RV. This allows us to extend to the case of multiple absorp-
tion features and reduce the problem of estimating the Doppler shift in a spectrum to linear
regression.

3.1. Mathematics of a Doppler-shifted Gaussian. If x represents the wavelength of light
and f (x) represents the normalized flux of light at that wavelength, then the normalized flux
of Doppler-shifted light is represented mathematically as f (ξx) where 1

ξ
is referred to as the

Doppler factor (Doppler (1842)). In special relativity, ξ is given by

(1) ξ = 1 + vr/c√
1 − (v/c)2

,

where c is the speed of light (Einstein et al. (1905)), v is the absolute speed of the source
and vr is the velocity along the line of site of the observer. While the Earth’s rotation and
revolution around the solar system barycenter often lead to relativistic effects, these motions
are well understood and can be corrected for with high precision (Blackman et al. (2017),
Wright and Eastman (2014), Blackman et al. (2020)). Furthermore, the velocity due only to
orbiting exoplanets is well below the speed of light. Therefore, under the assumption that the
barycentric corrections are applied accurately and v � c, ξ can be well approximated with
the classical formula

(2) ξ = 1 + vr

c
.
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FIG. 5. The first four Hermite–Gaussian functions given by equation (3).

Consider the effect of a Doppler shift when f (x) is a Gaussian like many of the inverted
absorption features in a spectrum (Gray (2005)). To model this, we propose the Hermite–
Gaussian functions, ψn(x), defined as

(3) ψn(x) = 1√
2nn!√π

Hn(x)e−(x2)/2,

where Hn(x) represents the nth degree (physicist’s) Hermite polynomial, which can be writ-
ten in closed form as

(4) Hk(s) = k!
�k/2�∑
m=0

(−1)m

m!(k − 2m)!(2s)k−2m,

with �a� representing the floor function that returns the largest integer less than or equal to
the real number a (Lanczos (1938)).

An illustration of the first four Hermite–Gaussian functions is shown in Figure 5.
According to Johnston (2014),

(5)
∫ ∞
−∞

Hn(x)Hm(x)e−x2
dx = √

π2nn!1{m = n}
is a well-known fact about the Hermite polynomials, where 1{A} represents the indicator
function of the event A (which is equivalent to the Kronecker delta function).

Therefore, we have, by combining equations (3) and (5), that

(6)
∫ ∞
−∞

ψn(x)ψm(x) dx = 1{m = n}.
Furthermore, one can show that the set of Hermite–Gaussian functions forms a complete
orthonormal basis of the set of all square-integrable real-valued functions, L2(R) (Johnston
(2014)). One can also generalize the definition of the Hermite–Gaussian functions to have a
general location, μ, and scale, σ :

(7) ψn(x;μ,σ) = 1√
σ2nn!√π

Hn

(
x − μ

σ

)
e
− (x−μ)2

2σ2 .

By a simple change of variables, one can show that the set of generalized Hermite–Gaussian
functions, ψn(x;μ,σ), also forms a complete orthonormal basis of L2(R) for any μ ∈ R

and any σ ∈ R+, the positive real numbers. Therefore, for such an L2(R) function g, we can
decompose it as

(8) g(x) =
∞∑

n=0

cnψn(x;μ,σ).
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In this instance, let f (x) be a Gaussian with center μ and width σ , and let g(x; ξ) = f (x) −
f (ξx) be the difference between f (x) and its Doppler-shifted version. Decomposing this
g(x; ξ) as in equation (8), we have Theorem 1, giving the approximation error when only
n = 1 is used.

THEOREM 1. For any σ ∈ R+ and any μ, ξ ∈ R and g(x; ξ) = exp (− (x−μ)2

2σ 2 ) −
exp (− (ξx−μ)2

2σ 2 ) decomposed in the Hermite–Gaussian basis as g(x; ξ) = ∑∞
n=0 cn(ξ)ψn(x;

μ,σ),

(9) lim
ξ→1

∫ ∞
−∞(g(x; ξ) − c1(ξ)ψ1(x;μ,σ))2 dx∫ ∞

−∞(g(x; ξ))2 dx
= 1

1 + 2μ2

3σ 2

.

Before proving Theorem 1, we interpret it in the context of stellar spectroscopy. It is well
known that many absorption features in the spectrum of a star are described by the Voigt
profile (Ciuryło (1998), Gray (2005)) which is well approximated by a Gaussian for many
absorption features in stellar spectra. It is also the case that the central wavelength, μ, is
significantly larger than the width, σ , for each of these features. As an example, a typical
wavelength in the visible spectrum is 5000 Å, and the largest features near this wavelength
have a width that is upper-bounded by 0.5 Å; the maximum width of absorption features
detected between 4700 Å and 5300 Å by the AFF algorithm for the data collected from 51
Pegasi by EXPRES was 0.366 Å with the 88’th quantile being 0.1 Å (more details to come in
Section 5). For a feature with center 5000 Å and width 0.5 Å, the limit in Theorem 1 becomes
1.5 × 10−8. Therefore, the theorem implies that as ξ approaches 1 (i.e., at small values of
RV), the proportion of the difference, g(x; ξ), that remains to be modeled after using only
ψ1 with the same width and center as the original Gaussian is nearly zero. In other words,
Doppler shifting a Gaussian absorption feature at a small RV is approximately the same as
adding a constant multiple of ψ1 (which is a scalar multiple of the Gaussian’s derivative) to
the feature. This is a special case of a well-known result: if a given function evaluates to zero
at a given point, then the derivative is the leading term in the Taylor expansion about that
point.

Some of the RV detection algorithms, such as the template matching method described
in Bouchy, Pepe and Queloz (2001), attempt to model a Doppler shift by approximating the
derivative of absorption features with a high S/N template spectrum. They then use a wave-
length multiple of this derivative to create a nonlinear model of a Doppler shift with param-
eters to be fitted. At high wavelength values though, rescaling across a narrow wavelength
window is nearly the same as an additive shift. In fact, if the Doppler shift were additive, the
limit in Theorem 1 would be 0. Furthermore, an additive shift removes the nonlinearity in the
Doppler shift model. While this idea is not new (Butler et al. (1996)), the approximation error
of this has remained unknown. Therefore, Theorem 1 takes account of the wavelength rescal-
ing nature of the Doppler shift, giving the value of this approximation error for assuming the
shift to be additive at the limit of low values of RV.

To answer the question of how small an RV is small enough for this to be valid, we first
state some Lemmas that solve for the coefficients in the decomposition shown in equation (8)
with g(x; ξ), as defined in Theorem 1. Lemma 1 gives a useful recursive relationship of an
integral quantity that arises in solving the coefficients.

LEMMA 1. For Ik(a, b, c) := ∫ ∞
−∞ uke−(au2+bu+c) du where a > 0, we have that

I0(a, b, c) =
√

π

a
e( b2

4a
−c),(10)
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I1(a, b, c) = −
√

πb

2a3/2 e( b2
4a

−c)(11)

and, for all k ≥ 2,

Ik(a, b, c) = − b

2a
Ik−1(a, b, c) + k − 1

2a
Ik−2(a, b, c).(12)

Using Ik(a, b, c), as defined in Lemma 1, Lemma 2 gives the mathematical solution for
the coefficients.

LEMMA 2. For g(x; ξ), as defined in Theorem 1, decomposed as g(x; ξ) =∑∞
n=0 cn(ξ)ψn(x;μ,σ), and Ik(a, b, c), as defined in Lemma 1, we have that, for ε = ξ − 1,

(13) c0(ε) =
√

σ
√

π − 1√
σ
√

π
I0

(1 + ε + ε2

2

σ 2 ,−2μ + εμ

σ 2 ,

(
μ

σ

)2)

and, for all k ≥ 1,

(14) ck(ε) = −
√

σk!2k

√
π

� k
2 �∑

m=0

(−1)m

4mm!(k − 2m)!Ik−2m

(
1 + ε + ε2

2
,
εμ

σ
(1 + ε),

1

2

(
εμ

σ

)2)
.

Using Lemmas 1 and 2, we numerically calculate the first seven coefficients as a function
of RV and illustrate the results in Figure 6. It is not hard to notice that all the coefficients go
to 0 as the RV goes to 0. This is because with no RV, g(x; ξ), as defined in Theorem 1, is the
zero-function. More importantly though, Figure 6 illustrates that, as the RV approaches zero,
the dominating coefficient is c1.

When vr has a magnitude below 100 m s−1, it appears that all other coefficients besides c1
are negligible, with c0 and c2 being the only possible exceptions. Furthermore, at velocities
with a magnitude below 500 m s−1, c1 is approximately linear as a function of vr . Since
Figure 1 illustrates that a considerable number of currently known exoplanets exert a RV
on their host star with a semiamplitude less than 100 m s−1, which is especially true for

FIG. 6. The coefficient solutions that result from modeling a Doppler-shifted Gaussian with the Hermite–Gaus-
sian basis are plotted here as a function of vr . The left panel has the absolute value of the coefficients on the
vertical axis and illustrates that, at low values of vr , c1 is the dominating coefficient. The middle and right panels
show the exact coefficient value and illustrate that, at low values of vr , c1 is nearly a constant multiple of it. Only
the zero’th up to the sixth coefficients are shown. The Gaussian here has the parameters of μ = 5000 and σ = 0.1
which is meant to represent a typical absorption feature in a stellar spectrum.
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Earth-like exoplanets, it suggests that it is not unreasonable to ignore all Hermite–Gaussian
coefficients besides c1 in modeling a Gaussian absorption feature that is Doppler-shifted due
to an exoplanet.

Now that we have the coefficient solutions and have a sense that c1 is the most dominant
coefficient at values of RV that are of interest, we calculate the approximation error made
by ignoring all other coefficients. To do so, we introduce a new quantity that we refer to as
the standardized approximation error which appears in Theorem 1. For a function ϕ approx-
imated by the function φ, define the standardized approximation error D(φ ‖ ϕ) as

(15) D(φ ‖ ϕ) =
∫ ∞
−∞(ϕ(x) − φ(x))2 dx∫ ∞

−∞ ϕ(x)2 dx
.

In a sense, D(φ ‖ ϕ) gives the proportion of the squared function ϕ that remains to be mod-
eled after approximating with φ. In our case we consider D(g(x; ξ) ‖ c1(ξ)ψ1(x;μ,σ)).2

Lemmas 3 and 4 help us solve for the limit as ξ approaches 1 (i.e., as vr approaches 0).

LEMMA 3. For g(x; ξ), as defined in Theorem 1, decomposed as g(x; ξ) =∑∞
n=0 cn(ξ)ψn(x;μ,σ), we have that

(16) D
(
g(x; ξ) ‖ c1(ξ)ψ1(x;μ,σ)

) = 1 − c2
1(ξ)∫ ∞

−∞(g(x; ξ))2 dx
.

LEMMA 4. limξ→1
c2

1(ξ)∫ ∞
−∞(g(x;ξ))2 dx

= 1

1+ 3σ2

2μ2

.

Combining Lemmas 3 and 4 completes the proof of Theorem 1. (See Section 2 of the
Supplementary Material (Holzer et al. (2021)) for a more detailed proof of each.)

Theorem 1 does not explicitly give a rate at which the standardized approximation error
approaches its limit. But by using Lemma 3 and equation 35 from the proof of Lemma 4 in
Section 2 of the Supplementary Material (Holzer et al. (2021)), we illustrate the rate with
Figure 7. Note that the standardized approximation error shown here is bounded between 0
and 1 and that the limit is actually nonzero. Figure 7 illustrates that as ξ → 1, D(g(x; ξ) ‖
c1(ξ)ψn(x;μ,σ)) approaches its limit quadratically and that when vr < 50 m s−1, the stan-
dardized approximation error is less than 2.5 × 10−5 away from the limiting value.

3.2. RV estimation method. Theorem 1 suggests a natural new method for detecting a
Doppler shift in the spectrum of a star. As long as the magnitude of vr is small enough,
the absorption feature is approximately Gaussian and the ratio μ/σ for the feature is large
enough, we can do a least-squares fitting of the first-degree Hermite–Gaussian function to the
difference between a template spectrum and a Doppler-shifted spectrum and map the fitted
coefficient to a RV. As illustrated in Figure 6, c1 at low values of vr is directly proportional
to vr .

According to Lemma 2, c1(ε) =
√√

π√
2σ

εμ(1 + ε)h̃(ε), and limε→0
∂
∂ε

c1(ε) = μ
√√

π√
2σ

.
Furthermore, using equation (2) with ε = ξ − 1, we have that the mapping from ε to RV

is vr(ε) = cε and limε→0
∂
∂ε

vr(ε) = c. Hence, limε→0
∂

∂vr
c1(vr(ε)) = μ

√√
π

c
√

2σ
which is the

2Since g(x; ξ) approaches the zero function as ξ → 1 and for any k ≥ 0 ck(ξ) → 0 as ξ → 1, the ordinary
approximation error of using any individual k would approach 0. This would tell us nothing about the relative
magnitudes of the Hermite–Gaussian coefficients. The denominator of D(g(x; ξ) ‖ c1(ξ)ψ1(x;μ,σ)) adjusts for
this by standardizing the quantity.
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FIG. 7. The standardized approximation error D(g(x; ξ) ‖ c1(ξ)ψn(x;μ,σ)) in Theorem 1 as a function of vr

with parameters μ = 5000 and σ = 0.1 is plotted in bold. The limit is also shown in the horizontal red dashed
line.

desired proportionality constant. So the proportionality that is valid at low values of RV, vr ,
is

(17) c1 = μ
√√

π

c
√

2σ
vr .

The strongest assumption made when applying the theorem is that the absorption features are
Gaussian shaped. Because this is never exactly true, we analyze this model misspecification
further in Section 3.4 below.

3.3. Extension to multiple features. Since a single absorption feature is unable to give
a RV estimate that is precise enough, we need to use as many features in the spectrum as
possible. Instead of fitting only a single first-degree Hermite–Gaussian function to the dif-
ference spectrum, we fit a sum of these functions to it. To construct this sum, we note that it
must take into account the fact that differing absorption features will have different centers,
widths, and depths. The generalized Hermite–Gaussian functions in equation (7) can take ac-
count of the different centers and widths. Furthermore, according to equation 12 in the proof
of Lemma 2 (provided in Section 2 of the Supplementary Material (Holzer et al. (2021))),
Doppler-shifting a Gaussian with any amplitude simply multiplies the resulting coefficients
by the same amplitude. In the case of stellar spectra, this amplitude is simply the line depth.
Therefore, using equation (17), the resulting model of the difference flux at pixel i, yi , as a
function of wavelength, xi , to be fitted becomes

(18) yi = vr

n∑
j=1

√√
πdjμj

c
√

2σj

ψ1(xi;μj ,σj ) + εi,

where the sum is over all n absorption features, dj represents the line depth of the j th feature
and each εi is independent with expectation 0.

In practice, we assume that εi ∼ N(0, 
2
i ) and is independent for each i. Many modern

stellar spectra come with uncertainties for each pixel’s normalized flux.3 This is particularly
true for the normalized spectra from EXPRES that we analyze here. EXPRES estimates the
uncertainty in each pixel by assuming the unnormalized flux is Poisson, estimating the red
noise, and accounting for intrinsic effects of flat-fielding (Petersburg et al. (2020)). Therefore,

3If these uncertainties are not provided, weights can be defined using the standard assumption that the raw flux

is Poisson. That is, the weights can be set to wi = conti
τ̂i

, where conti is the value of the raw continuum used for

normalization at pixel i and τ̂i is the value of the estimated template.
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we assume that the provided uncertainties, 
̂i , are accurate estimates of each 
i and estimate
vr in equation (18) through weighted least squares with weights wi = 1/
̂2

i .
To calculate the difference flux, yi , at pixel i we need a template spectrum. Here, we use

the estimated template calculated from the set of observed spectra (see Section 3.5 for more
details).

Since equation (17) approximately holds for vr < 500 m s−1, which well encompasses
most exoplanets of interest, we have a new Hermite–Gaussian based radial velocity (HGRV)
estimation method. For a spectrum of Gaussian absorption features, we can create a linear
model of the difference spectrum due to a Doppler-shift as a function of the sum of ψ1
functions as given by equation (18), the coefficient of which is the RV. Therefore, we have
reduced the Doppler shift estimation problem to linear regression with no intercept. This
method does not fundamentally require interpolation,4 treats neighboring pixels similarly,
accounts for the hetroskedastic noise and easily allows for obtaining the standard error of the
estimated RV for statistical inference.

3.4. Model misspecification. The HGRV method assumes that the shape of absorption
features is Gaussian which does not hold exactly. Various reasons are understood to contribute
to this: a line following the Voigt profile may have a nonnegligible Lorentzian component, the
line may be deep enough to depart from the Voigt profile or there may be additional effects
in the star’s atmosphere that are not well encompassed by current physical models.

Since the HGRV method assumes Gaussian shaped absorption features, we now investigate
the effects of applying it to non-Gaussian shaped features. We consider the absorption feature
in the NSO spectrum between 5243.7 and 5244.2 Å. This feature is shown in the left panel
of Figure 8, along with its best-fit Gaussian. For 50 equally spaced values of RV from 1
to 100 m s−1, we Doppler shift this feature according to equation (2), use cubic splines to
interpolate back to the original wavelength solution (Mészáros and Prieto (2013)) and fit the
difference flux with the HGRV model from equation (18) (with n = 1 and d , μ, and σ as the
estimated parameters from the best-fit Gaussian). The ratio between the estimated and true
RV is shown in the right panel of Figure 8.

Figure 8 illustrates that, for this particular absorption feature, the HGRV method slightly
overestimates the RV. For example, if the true RV is 1 m s−1, this bias would be approx-
imately 0.5 cm s−1. Similarly, for a true RV of 100 m s−1 the bias would be less than

FIG. 8. Results for analyzing the effects of misspecifying the model of the absorption feature in the NSO spec-
trum between 5243.7 and 5244.2 Å as a Gaussian. The left panel shows the feature in solid blue and the best-fit
Gaussian in dashed orange. The right panel shows the ratio of the RV estimated with equation (18) v̂r (with n = 1)
and the true RV, vr .

4Interpolation is, however, used later on a high S/N, oversampled estimate of the template spectrum to give it
the same wavelength solution as each observed spectrum so that the difference flux can be calculated.
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0.4 m s−1. These results are consistent across other absorption features considered. For ad-
ditional discussion about applying the same analysis to other NSO absorption features, see
Section 3 of the Supplementary Material (Holzer et al. (2021)).

3.5. Nonparametric template estimation. Since the HGRV method models the difference
in normalized flux, we need to have a template spectrum that approximates the quiet spectrum
of a star with no stellar activity. In principal, if one knows the approximate effective tempera-
ture, surface gravitational acceleration, metallicity, microturbulent velocity and the elemental
abundances of the star with high precision, a synthetic spectrum could be produced at the
proper resolution to give such a template (Sneden et al. (2012)). However, in practice these
stellar parameters and the atomic line transition data are not known well enough to make this
feasible. Therefore, we take a data-driven approach.

The method we propose for estimating the template is to combine all normalized, barycen-
tric corrected, observed spectra across time epochs and fit a smooth curve to estimate a rep-
resentative spectrum. The time sampling of the spectra can affect how well the estimated
template approximates the true template. For example, two of the possible extremes in the
sampling are if all the observations are at the same orbital phase or if the observations are
uniform across all phases. The estimated template under these extremes are not likely to af-
fect the end result of the HGRV approach, so this template estimation method is sufficient for
our purposes.5

All observed spectra are combined together, and we fit a local regression curve to this
combined spectrum with a Gaussian kernel. We use local quadratic, instead of local linear,
regression in order to better model the cores of absorption features. In practice we only fit at
most eight Å of the combined spectrum at a time, choosing an optimal bandwidth through
generalized cross-validation for each section. This allows the computation to be parallelized.
It also allows the bandwidth to be locally adaptive and take account of how absorption fea-
tures are narrower on the blue end of the spectrum compared to the red end. An advantage of
this approach is that, when combining all observed spectra, the wavelength solutions do not
need to match across epochs, further minimizing the role of interpolation.

4. Simulation studies. This section includes two simulation studies based on the pro-
posed methodology. The first is related to the template estimation approach, and the second
compares properties of the RV estimation using the HGRV method with those of the com-
monly used CCF method.

4.1. Template estimation. A nice feature of the HGRV approach is that no prespecified
template is required because the template spectrum is estimated from the full time-series
of spectra using local quadratic regression (see Section 3.5). The estimated template contains
both bias and variance, and we investigate the overall root mean squared error (RMS) through
simulation. Furthermore, we consider how the RMS changes with the number of spectra and
the S/N. Finally, we explore how the time-sampling cadence affects the estimated template.

5Using this template estimation approach with time sampling that is approximately uniform across all phases
of an exoplanet’s orbit may lead to slightly broader features in the estimated template. However, broadening
tends to be primarily an even effect and so would not significantly hinder the RV estimation using the HGRV
method which fits an odd function (ψ1) to the difference flux in equation (18). Time sampling carried out in such
a way that the observations occur at approximately the same phase of an exoplanet’s orbit should not have this
broadening of features. However, a constant RV offset may be present between the estimated template spectrum
and all observed spectra. Because the same estimated template is used for each observation and only relative RV
estimates are needed, this offset should not influence the fitted orbital parameters.
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For a star’s true template with normalized flux τ and estimated template with normalized
flux τ̂ , we define the RMS as

(19) RMS(τ̂ ) =
√√√√1

n

n∑
i=1

(τi − τ̂i )2.

For our simulation we use a version of the NSO spectrum that we smooth through lo-
cal quadratic regression that approximately represents the quiet solar spectrum with infi-
nite S/N. We also use cubic spline interpolation to give this smoothed NSO spectrum the
same wavelength solution as the 51 Pegasi spectrum observed by EXPRES on Julian Day
(JD) 2,458,641.952. For a given number of observed spectra, N , each with a given S/N,
our simulation consists of the following steps: (i) sample time epochs t1, . . . , tN where
tk ∼ iid Uniform(0,2π), (ii) calculate RV’s vr,1, . . . , vr,N where vr,k = 10 sin(tk), (iii) sim-
ulate N observed spectra with wavelength axis Doppler-shifted using equation (2) with RV
vr,k , and normalized flux axis with independent Poisson noise at the given S/N (where the
noise is added to the un-normalized flux) and (iv) apply the template estimation method de-
scribed in Section 3.5, and calculate the resulting RMS(τ̂ ).

In our simulations the number of spectra, N , ranges from one to 31 (in steps of 2) and
the S/N ranges from 100 to 250 (in steps of 10). For each pair of values, we perform the
simulation 50 independent times and calculate the average and standard deviation of the
RMS. Each of these 50 represents a different cadence. For computational purposes we do not
use the entire spectrum for this simulation. Instead, we use the wavelength window 5240–
5245 Å for our simulation. We also ran the same simulation on the wavelength window
4965–4970 Å, which has a higher density of absorption features, as well as the window 6381–
6386 Å which has a lower absorption feature density. The results for these additional windows
are similar to the first window. The results for the window 5240–5245 Å are summarized in
Figure 9, which shows the average RMS(τ̂ ) on the left panel and the standard deviation of
the RMS(τ̂ ) on the right, for each pair of S/N and number of spectra.6

The left plot in Figure 9 illustrates that, once the number of spectra reaches approximately
21, the average RMS(τ̂ ) of the estimated template is below approximately 0.001 (which
represents a S/N of about 1000) for any S/N above 100. On the other hand, if all observed
spectra had a S/N above 200 (which is often true of EXPRES spectra), one would only need
about 11 spectra to reach this template estimation precision. Furthermore, by examining the
differences between the true template and individual instances of an estimated template, the
residuals showed no obvious systematic bias within the wavelength bounds of absorption
features. The same plot also shows that the RMS(τ̂ ) is more affected by the number of spectra
than the S/N in this example. Figure 10 shows how the RMS indicated on the colorbar of the
left plot in Figure 9 maps to an effective S/N of the estimated template.

The right plot in Figure 9 illustrates how the RMS(τ̂ ) varies due to the differing cadences in
the 50 samples used for each pair of S/N and number of spectra. The simulation suggests that,
as expected, the greatest differences are found when using only one spectrum. The variation
is minimal for 11 or more spectra and a S/N above 150.

We next investigate how the HGRV-estimated RV changes when using an estimated tem-
plate instead of the true template. We first note that there are two main sources of a difference
in the estimated RV due to template estimation for this simulation study design: (i) finite S/N

6The results of this simulation did not change significantly when calculating the RMS using only the portion of
the spectrum that lies inside the wavelength intervals corresponding to absorption features as given by the AFF
algorithm. For instance, with a S/N of 200 and 20 observed spectra, the original RMS was 0.00078 ± 0.00003,
whereas the RMS on only the portion of the spectrum pertaining to absorption features was 0.00079 ± 0.00003.
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FIG. 9. Simulation study results for estimating the template spectrum between 5240 and 5245 Å. For each
S/N and number of spectra, N , 50 simulations were carried out each with a different cadence. Each simulation
involved estimating the template with local quadratic regression and calculating the RMS. The left plot shows the
average, and the right plot shows the standard deviation, of the RMS across the 50 simulations for each pair of
S/N and N . The plots share the same vertical-axis.

of the estimated template and (ii) shape changes of absorption features due to the nonpara-
metric smoothing and the changing cadence. The second source is what we investigate here.
Since each of the observed spectra has a different RV, they all will be slightly shifted with
respect to the true template and each other. Depending on the cadence, this could lead the
estimated template to have some shift relative to the true template and have slightly broader
absorption features. Furthermore, the bias of nonparametric smoothing may also broaden the
shape of absorption features. Since the same estimated template is used for each observation,
a shift with respect to the true template would only result in a constant offset of all RV’s.
Since this constant offset can be accounted for and removed, it is not problematic.

To see how such shape changes might influence the variance of the estimated RV, we ap-
ply a procedure similar to the one used to produce Figure 9. With the number of observed
spectra set to 20 and a S/N of 80,000 (essentially infinite), we simulate 50 sets of observa-
tions, each with a randomly sampled cadence. The final result of this is a set of 50 different

FIG. 10. The estimated effective S/N of a spectrum as a function of the RMS as defined in equation (19).
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estimated templates with the dominant difference from the true template being the possible
shape changes described above.

For each of these 50 estimated templates we use the true template to generate an ob-
served spectrum with S/N of 300 and a 10 m s−1 Doppler shift. To understand how the shape
changes affect the variance of the RV estimate, we calculate the difference flux using the true
template and this observed spectrum. The HGRV method then returns an estimated RV for
each of these 50. Using the same set of 50 observed spectra, this process is then repeated with
the estimated templates in place of the true template. Each observed spectrum then has two
RV estimates, one from the true template and one from an estimated template. We find that
the standard deviation of the RV estimates that used the true template differs only by approx-
imately 0.001 m s−1 from the standard deviation of the RV estimates that used the estimated
templates. This suggests that the effect of shape changes on the variance of the estimated RV
due to nonparametric smoothing and differing cadences is negligible. Furthermore, we find
that the estimated relative RV differs in magnitude by approximately 0.006 m s−1 on average
when using the estimated templates instead of the true template.

4.2. RV estimation. To investigate the accuracy of the HGRV method, especially at low
velocities, we simulate spectra with a known RV and estimate the RMS of v̂r . By design, this
simulation ignores astrophysical effects on RV-precision from stellar activity, analyzing the
error contribution from modeling alone. To estimate this RMS, we use

(20) R̂MS(v̂r ) =
√√√√1

n

n∑
i=1

(v̂r,i − vr)2,

where n is the number of simulations at RV vr . The square of R̂MS(v̂r ) can be decomposed
into the sum of the variance and squared bias of v̂r as well. To get a more detailed summary
of our simulation, we also estimate the standard deviation (SD) with

(21) ŜD(v̂r ) =
√√√√1

n

n∑
i=1

(v̂r,i − v̄r )2,

where v̄r is the average estimated velocity, and estimate the bias with

(22) B̂ias(v̂r ) = v̄r − vr .

We explore how the RMS(v̂r ), Bias(v̂r ) and SD(v̂r ) vary with S/N and vr . Our simula-
tion takes five equally spaced values of S/N 100,150, . . . ,300 and four values of vr equally
spaced on a log scale from 0.01 to 100 m/s. For each pair of S/N and vr values, we use the es-
timated template spectrum for 51 Pegasi to simulate 2000 independent spectra with the proper
Doppler shift given by equation (2). Each such simulation consists of using cubic splines to
interpolate the shifted, oversampled and high S/N template to the same wavelength solution
as the observed 51 Pegasi spectrum from EXPRES on JD 2,458,639.958 (see Section 5 for
more details) and including Poisson noise of the specified S/N.

To approximately account for the uncertainty of the estimated template in this simulation,
we use the results from Section 4.1. Figure 9 illustrates that the RMS (as defined in equation
(19)) for a given S/N does not change significantly when increasing the number of spectra
beyond about 21. Therefore, we take the column of the left plot in Figure 9 pertaining to
21 spectra and the results shown in Figure 10 to map the S/N of observed spectra to an
effective S/N of the estimated template spectrum. For each of the 2000 independent spectra
in this simulation and for each pair of S/N and vr , we add noise to the true template with the
appropriately mapped effective S/N to approximate the effect of using the estimated template.
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FIG. 11. The results for applying the HGRV method to spectra simulated from the estimated 51 Pegasi template
spectrum. The left, middle and right panels show the estimated RMS, SD and bias of the estimated RV, respectively.
All three panels share the same vertical axis that represents the true RV with which each spectrum was simulated.
The S/N of the simulated spectra are given by the horizontal axis on top of each panel. The color scale for each
panel is represented by the colorbar below it. Each pair of S/N and vr involved 2000 independent simulations to
estimate the three quantities.

The results for obtaining each v̂r with the HGRV method are shown in Figure 11. The
left panel of Figure 11 illustrates that the HGRV method is able to obtain a precision less
than 0.3 m s−1 when the S/N is approximately 250 or higher, at least in the small RV regime.
Additionally, the right panel of Figure 11 builds upon the model misspecification simulation
done in Section 3.4 and informs us that combining many (non-Gaussian) absorption features
in the HGRV method does not lead to an amplified systematic bias. We also find that the bias
is somewhat proportional to the true RV. Furthermore, the SD contributes significantly more
to the overall RMS than whatever bias may be present at the RV and S/N considered here.7

We also run the same simulation, estimating the RV with the CCF method, as used in
the EXPRES pipeline (Petersburg et al. (2020)), with the commonly used HARPS G2 mask.
Such a mask is a collection of wavelengths and weights (based on line depths) for many of the
absorption features in a spectrum; the mask is designed to align with the absorption features
of a star at rest (i.e., a star with zero RV.) Since the CCF method returns an absolute RV,
rather than a relative RV, we first calculate the RV given for the estimated 51 Pegasi template
with no noise (−33,168.5399 m s−1) and subtract this offset from all estimated RV’s from
the simulation. We then compare the estimated bias, SD and RMS of the two methods at
each pair of S/N and vr . Figure 12 shows the difference in RMS between the HGRV and
CCF methods. Since every pair of S/N and vr in Figure 12 shows a negative RMS difference,
this suggests that the HGRV method has higher RV-precision than the CCF approach in this
regime.

As a more detailed summary of the RMS improvement of the HGRV, as demonstrated by
Figure 12, the difference in the estimated SD and absolute bias (the sum of squares of which
equal the squared RMS) is shown in Figure 13.

7We also performed the same simulation with a S/N of 1000 and a RV of 1 m s−1 (again using the estimated
51 Pegasi template spectrum and simulating 2000 independent spectra). This simulation gave an estimated RMS
of 0.077 m s−1, an estimated SD of 0.077 m s−1 and an estimated bias of 2.5 × 10−3 m s−1. This demonstrates
that the HGRV method has the capability of obtaining a RV precision less than 0.1 m s−1.
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FIG. 12. The difference between the HGRV and CCF RMS for each pair of S/N and true vr . Each pair consisted
of 2000 independent simulations for each method. The difference is indicated on the right by the colorbar, which
is centered at 0.0 m s−1, and demonstrates the higher RV-precision of the HGRV method.

Figures 12 and 13 inform us that the HGRV method is an example of the statistical phe-
nomenon where a small increase in bias reduces the overall RMS. The greatest difference in
RMS between the HGRV and CCF methods appears to be at low S/N.

We suspect that the HGRV method’s reduced RMS may be connected to the pixel sampling
of the wavelength. In this simulation we found that, when using the wavelength sampling of
the NSO spectrum, the RMS between the CCF and HGRV methods was nearly the same at
most pairs of S/N and vr . However, when we instead interpolated to the wavelength solution
of a 51 Pegasi spectrum observed by EXPRES, the obvious difference in RMS, as demon-
strated in this simulation study, emerged. This suggests that the HGRV method may be more
robust against the pixel sampling that differs across spectrographs.

To check the stability of this simulation, we used the wavelength solution for the 51
Pegasi spectrum from EXPRES observed on JD 2,458,804.588 instead of the wavelength
solution from JD 2,458,639.958 used above. Running the HGRV and CCF approach, each

FIG. 13. The difference between the HGRV and CCF standard deviation and absolute bias for each pair of S/N
and true vr . Each pair consisted of 2000 independent simulations for each method. The differences are indicated
below each panel by the colorbars which are centered at 0.0 m s−1.
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with 2000 independent simulations, with vr = 1 m s−1 and a S/N of 200 produced an RMS
difference of −0.088 m s−1 (previously −0.067 m s−1, as shown in Figure 12. All esti-
mated RVs from the CCF and HGRV methods for these simulations are provided in the
source code of the Supplementary Material (Holzer (2021)) and in the repository https:
//github.com/parkerholzer/hgrv_method.

5. Applications to 51 Pegasi data. 51 Pegasi is the first main-sequence star similar
to the Sun discovered to possess an exoplanet (Mayor and Queloz (1995)). The exoplanet
has been found to have a RV semiamplitude of 55.57 ± 2.22 m s−1 and orbital period of
4.2292±0.0003 days (Marcy et al. (1997), Mayor and Queloz (1995), Wang and Ford (2011),
Bedell et al. (2019)). To test the proposed HGRV method, we use data recently collected for
51 Pegasi by EXPRES (Jurgenson et al. (2016), Petersburg et al. (2020)). The recent spec-
trograph of EXPRES corrects for many of the instrumental effects that prior observations of
51 Pegasi were unable to avoid, allowing for greater precision of derived RV. Our dataset
consists of 56 observed spectra from JD 2,458,639 to 2,458,805 (June 5, 2019 to November
18, 2019). The S/N of these spectra ranges from 89 to as high as 385, but most are close to
200 (see Table 1 in Section 4 of the Supplementary Material (Holzer et al. (2021)) for more
details). These spectra have wavelength solutions that differ and do not consist of equally
spaced pixels.

5.1. Data corrections. The raw data collected by the spectrograph do not have a flat
continuum. This is, in part, due to the star’s temperature causing more photons to be emitted
at certain wavelengths than others. It is also due to instrumental effects, such as the theoretical
blaze function (Barker (1984), Xu et al. (2019)). To correct for these effects, we adopt the
normalization from the EXPRES pipeline provided with each spectrum (Petersburg et al.
(2020)).

We also correct for the effects of the Earth’s motion around the Sun by adopting the
barycentric corrected wavelength solution provided with each observed spectrum by the EX-
PRES pipeline (Blackman et al. (2017), Blackman et al. (2020), Petersburg et al. (2020)).
Without the barycentric wavelengths provided by the EXPRES team, our derivation of RV
would incur errors at the level of tens of cm s−1.

Finally, we correct for absorption features due to the Earth’s atmosphere, often referred to
as tellurics. Since the spectrograph is ground-based, the light from the star passes through the
Earth’s atmosphere, causing the presence of additional absorption features in the spectrum
that are not representative of the target star. To correct for these tellurics, we use the model
provided by the EXPRES team with each spectrum that was created using the approach of
Leet, Fischer and Valenti (2019). Although one could potentially divide out shallow tellurics
to approximately correct for them with such a model, we take a more conservative approach
and mask out all pixels with a telluric model normalized flux less than 1.0.

While this telluric correction approach may not remove all tellurics, the HGRV method
has two advantages that minimize the effect tellurics have on the estimated RV. First, because
the tellurics occur at the same wavelength over time in the raw spectra and, therefore, occur
at different wavelengths in the barycentric corrected spectra, the nonparametric smoothing
used to estimate the template averages out any tellurics missed by the telluric model. Second,
any tellurics that persist after the smoothing in the estimated template and are detected by
the AFF algorithm will have a very small depth. Therefore, they will have a relatively low
leverage in the HGRV regression, minimally affecting the estimated coefficient.

Because a spectrum covers over 3000 Å of wavelength, the spectrograph collects the data
in (partially overlapping) wavelength orders stacked onto the rectangular detector. Therefore,
we begin by stitching all orders of a given epoch together to create a single array of wave-
length and normalized flux. To stitch two neighboring orders together in their overlapping

https://github.com/parkerholzer/hgrv_method
https://github.com/parkerholzer/hgrv_method
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FIG. 14. A subset of the estimated template spectrum calculated from 51 Pegasi data is shown in the red dashed
line on top of all observed spectra used in the calculation (shown in gray). The feature bounds that result from
running the AFF algorithm on the estimated template spectrum are also shown in blue horizontal lines. The
full spectrum goes from 4470–6800 Å, but for visualization only 5240–5245 Å are displayed. The error bars of
the estimated template between 4850 and 6800 Å (i.e., the wavelengths used in the analysis) have a median of
5.2 × 10−4 and a 99th percentile of 1.1 × 10−3.

region, we use cubic-spline interpolation to give the same wavelength solution to both orders
in the overlap region (Mészáros and Prieto (2013)). We then take the (pointwise) weighted
average of the normalized flux in the overlap region of the two orders. Since the signal de-
creases at the edge of each order due to the instrumental blaze function, we set the weights for
this averaging to decrease linearly for a given order as we get closer to the edge of the order.
After applying this stitching to all neighboring orders, we have a full observed spectrum for
each epoch.

We then proceed to estimate the template spectrum by way of local quadratic regression,
as described in Section 3.5. A small wavelength window of the estimated template spectrum
that is calculated from the 51 Pegasi data is shown in Figure 14.

Once we have the high S/N estimated template spectrum, we can use it in the AFF algo-
rithm to find absorption feature wavelength bounds. The tuning parameters of the algorithm
that were found through the optimization process, described in Section 1 of the Supplemen-
tary Material (Holzer et al. (2021)), were m = 7, α = 0.05, and η = 0.07 while eliminating
any features with a line depth less than 0.015. The algorithm finds a total of 4190 features
between wavelengths 4470 Å and 6800 Å. The results of this are also indicated in Figure 14
for the section of the spectrum displayed. Note that, when neighboring features are strongly
blended together, the AFF algorithm may either count both as a single feature or only pick
out one of the two.

5.2. Absorption feature parameters. In order to use equation (18) and estimate the RV,
we need to get estimates of the Gaussian parameters di , μi and σi for each absorption feature
i using the high S/N estimated template spectrum. To do so, we use the trust-region reflective
algorithm (Branch, Coleman and Li (1999)) which allows for initialization and bounds for
each parameter to be fitted in nonlinear least-squares. For absorption feature i we initialize
the Gaussian amplitude di at one minus the minimum flux attained by the estimated template
spectrum within the wavelength bounds of feature i, the Gaussian center μi is initialized
at the wavelength for which this minimum flux is attained and the Gaussian spread σi is
initialized at one-fifth the width of the wavelength window for feature i. The bounds on the
Gaussian amplitude are set to be [0,1], the Gaussian center is restricted to be within the
wavelength bounds for feature i and the Gaussian spread is lower-bounded by 0 and upper-
bounded by the width of the wavelength window for feature i.

For computational purposes we do not optimize the Gaussian parameters for all absorption
features simultaneously. Instead, we estimate the parameters of one absorption feature by
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FIG. 15. The estimated template spectrum for 51 Pegasi is shown in solid red with the spectrum that approxi-
mates it as a sum of Gaussians shown in dashed blue. The full spectra go from 4470–6800 Å, but for visualization
only 5240–5245 Å are displayed. All absorption features in this wavelength range were well fitted with Gaussians
within the feature wavelength bounds. Portions of the spectrum that are poorly fitted with the sum of Gaussians
are not contained within wavelength bounds of detected features, indicated with horizontal blue solid lines. The
residual difference is shown below the main plot with the same “Wavelength” axis and a magnified vertical axis.

simultaneously optimizing that feature with its two neighboring features. If the resulting fit
has a MSE within the wavelength bounds of the feature that is high,8 which particularly
happens when two strongly blended spectral lines are counted as one absorption feature, we
try fitting a sum of two Gaussians to it. If this still does not give a good fit, we eliminate
the respective feature so as to minimize the effects of model misspecification analyzed in
Section 3.4. Out of the 4174 absorption features detected by the AFF algorithm, 3868 were
well fitted with one or two Gaussians. An example of the fit model spectrum is shown in
Figure 15. Most of the features that were eliminated at this stage were strongly blended with
one or more neighboring features.

5.3. Results. To derive the RV for each epoch, we first limit the spectrum to the wave-
length region 4850–6800 Å. While the wavelength solution is excellent from 5000 to 7000 Å,
due to the laser frequency comb of EXPRES spanning that region (Blackman et al. (2020),
Petersburg et al. (2020)) and increasingly poor outside that window, we find that the spectra
are acceptable for our purposes down to about 4850 Å.9 Below 4850 Å the noise of the spec-
tra increases, and wavelengths above 6800 Å have too many strong telluric features. Limiting
to this wavelength region reduces the number of absorption features from 3868 to 2796. Fur-
thermore, we eliminate any pixels in the spectrum that are not contained in the wavelength
windows of these 2796 features.

After using cubic-splines to interpolate the high S/N, oversampled, estimated template
spectrum to the wavelength solution of the observed spectrum for a given epoch10

 (Mészáros
and Prieto (2013)), we calculate the difference spectrum between the two. We then compute
a new variable, which can be thought of as a transformation of the wavelength, using the sum∑n

j=1

√√
πdjμj

c
√

2σj
ψ1(xi;μj ,σj ) from equation (18). This transformation uses all fitted Gaus-

sian parameters, after which we model the difference flux across the full stitched spectrum as

8We consider a MSE to be high if it is greater than four multiples of the median MSE.
9The RV estimation error for the CCF and FM approaches increases when extending to wavelengths below

5000 Å. The HGRV approach does not appear to be negatively impacted when using wavelengths down to 4850 Å;
the reason for this is not yet fully understood.

10This is the only time in the proposed method that interpolation takes place.
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FIG. 16. The difference spectrum between the estimated template and the spectrum observed on June 7, 2019,
(JD 2,458,641.452) by EXPRES is shown in solid blue. The curve fitted according to equation (18) is shown in
dashed red. For visualization, only 5242–5245 Å is shown.

a function of this new variable using weighted least-squares regression without an intercept
to get the single RV estimate, v̂r .11 The standard error of v̂r is also easily estimated by the
usual least-squares approach. On average across the epochs, this standard error is approx-
imately 0.52 m s−1. An example of what the difference spectrum looks like in the interval
5242–5245 Å, together with the fitted Hermite–Gaussian model, is shown in Figure 16.

For our analysis we used the same 47 observations that were analyzed by the EXPRES
team in Petersburg et al. (2020) to estimate the orbital parameters. Several available obser-
vations were excluded by the EXPRES team due to low S/N or failure of the laser frequency
comb (see Petersburg et al. (2020) for details). The estimated RV’s for all available 51 Pegasi
EXPRES spectra using the proposed HGRV method are given in Table 1 of Section 4 of the
Supplementary Material (Holzer et al. (2021)). Using the noted 47 EXPRES observations
and the RV’s estimated from the HGRV method, we compare the orbital parameters and the
overall RV curve fit to those of the CCF method and the FM approach of Petersburg et al.
(2020).

The exoplanet orbiting 51 Pegasi has been found to have an eccentricity that is nearly zero
(Bedell et al. (2019), Marcy et al. (1997), Wang and Ford (2011), Petersburg et al. (2020)),
implying an orbit that is nearly circular. For a nearly circular planetary orbit, the host star’s
RV will behave approximately as a sine curve over time. Therefore, we use the Levenberg–
Marquardt optimization algorithm (Moré (1978)) to fit a sine curve to the derived RV using

(23) vr(t) = K sin
(

2π

P
t + φ

)
+ b.

The semiamplitude (K) is initialized at 55.5 m s−1 and the period (P ) at 4.23 days. The
phase (φ), representing a horizontal shift of the sine curve, and the RV offset (b), giving the
vertical shift, are both initialized at 0. To account for instrumental changes to EXPRES, b is
allowed to be different before and after August, 2019. The optimization converges to the fit
parameters given in Table 1,12 and the results of this fitting are shown in Figure 17. Therefore,
the HGRV estimation method recovers the well-known parameters for 51 Pegasi. The only
pair of parameters that had a significant correlation were the phase, φ̂, and the period, P̂ , with
correlation −0.813. All other pairs had correlation magnitudes less than 0.25.

Table 1 also gives the fit parameters from using the RV’s estimated from the CCF and FM
methods in Petersburg et al. (2020) for the 47 observations. Similar to the simulation study in

11The usual regression diagnostics should be considered here (e.g., investigating extreme outliers or points with
high leverage). No issues were found in this application to 51 Pegasi.

12The fitted values of the two offsets are not given in Table 1 since they are expected to differ significantly
between the three methods. The HGRV and FM methods give the RV relative to an estimated template, whereas
the CCF method gives the RV relative to a prespecified mask.
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TABLE 1
Fit parameters of equation (23) for 51 Pegasi

HGRV CCF FM

K̂ 56.48 ± 0.16 m s−1 56.20 ± 0.19 m s−1 56.17 ± 0.18 m s−1

P̂ 4.2308 ± 0.0001 days 4.2304 ± 0.0002 days 4.2306 ± 0.0002
φ̂ −1.333 ± 0.006 −1.326 ± 0.007 −1.331 ± 0.007
RMS 0.774 m s−1 0.936 m s−1 0.902 m s−1

Section 4.2, the reduced RMS demonstrates the ability of the HGRV method to outperform
the traditional CCF approach.

Including all 56 available spectra gives an estimated K̂ = 56.38 ± 0.16 m s−1, P̂ =
4.2308 ± 0.0001 days, φ̂ = −1.327 ± 0.005 and an RMS = 0.858 m s−1.

6. Discussion. In this paper we introduce a new approach to estimate the RV in stel-
lar spectra for exoplanet detection that we call the HGRV method. This method works by
modeling the differences between observed normalized spectra and an estimated template
spectrum. Even though this difference spectrum visually appears to be nothing more than
noise (e.g., see Figure 16), there is still an important Doppler signal present. By assuming
that absorption features are approximately Gaussian and that vr < 500 m s−1, the HGRV
method is able to identify this small signal. The application to 51 Pegasi, using spectra from
EXPRES, provides an example of how the HGRV-estimated RV’s produce a lower RMS in
the overall Keplerian fit than the classical CCF approach. Furthermore, the simulation study
of Section 4.2 demonstrates that, at low RV, characteristic of Earth-like exoplanets orbiting
Sun-like stars, the HGRV approach has higher RV-precision than the CCF.

Theorem 1 implies that the difference flux, imposed on a Gaussian absorption feature by
a planetary Doppler shift, can almost entirely be explained as a constant multiple of ψ1. This

FIG. 17. The RV’s derived for 51 Pegasi by the HGRV method, plotted as a function of orbital phase with solid
points whose color indicates the epoch, according to the colorbar on the right. All error bars are smaller than the
size of the points. The fitted sine curve from equation (23) is also shown in a blue-dashed curve using the HGRV
values from Table 1. The residuals are shown in the magnified window at the bottom and have the same units
(m s−1) as the plotted RV’s.
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reduces RV estimation to linear regression with no intercept, where the estimated coefficient
is the estimated RV. Therefore, the RV can be interpreted as a proportionality constant be-
tween the difference flux and an explanatory variable expressed as a linear combination of
first-degree generalized Hermite–Gaussian functions (see equation (18)).

One of the benefits of the HGRV method is the simplification to linear regression, allowing
for straightforward statistical inference on the estimated RV. Additionally, linear regression
allows heteroskedasticity to be easily addressed with weighted least squares.

Interpolation is only used for stitching together the orders of each observed spectrum and
for getting the estimated template spectrum on the same wavelength solution as each observed
spectrum. However, the interpolation for stitching orders can be fully avoided by taking each
order out to the midpoint of the overlapping regions rather than using weighted averages.
Alternatively, each order could be considered on its own as a way to fully avoid stitching
orders. Furthermore, the template can be produced with the same wavelength solution, as any
observed spectrum, by making these wavelengths the target in the local quadratic regression,
therefore removing the need for later interpolation.

We also observed in the 51 Pegasi example that the HGRV method is relatively robust
to inaccurate normalization. For example, the difference flux between the observation at JD
2,458,639.958 and the estimated template has a visually identifiable offset from zero, but
including this observation’s estimated RV in the orbital parameter estimation of equation
(23) slightly reduced the model’s RMS. This robustness may be due to how, on the scale
of individual absorption features, inaccurate normalization is approximately an even effect.
More work is needed, however, to confirm this general robustness.

An important feature of the HGRV method that also arises from its use of linear regression
is its potential to be extended for disentangling Keplerian velocities due to exoplanets from
atmospheric velocities due to the star itself. The convective motion and magnetic activity of
stars lead to stellar activity in the form of starspots, granulation, faculae, etc. which add red
noise to the spectra of stars that can hide a true Doppler shift or temporarily mimic a RV
(Desort et al. (2007), Queloz et al. (2001), Saar and Donahue (1997), Meunier, Desort and
Lagrange (2010)). Stellar activity can impose a false RV of approximate magnitude 1 m s−1

for quiet stars (Hatzes (2002), Lagrange, Desort and Meunier (2010), Isaacson and Fischer
(2010)) to hundreds of m s−1 for the most active (Saar and Donahue (1997), Paulson, Cochran
and Hatzes (2004)). While efforts have been made to model this activity (e.g., Rajpaul et al.
(2015), Tuomi et al. (2013), Delisle et al. (2018)) as well as use alternative forms of the cross-
correlation method to correct for activity (e.g., Queloz et al. (2001), Simola, Dumusque and
Cisewski-Kehe (2019)), these have had limited success in disentangling it from a true Doppler
shift at RV’s below 1 m s−1 (Dumusque et al. (2017)).

One way the HGRV method could potentially be utilized for disentangling stellar activity
from Keplerian Doppler shifts is by approximately orthogonalizing these two effects. The
general idea behind this is to find a way by which stellar activity affects absorption features
and a Doppler shift does not. Davis et al. (2017) use principal components analysis to show
that, at least according to simplified models of starspots and faculae on the Sun, the signals
of stellar activity and a Doppler shift are distinguishable. Therefore, stellar activity would
change a Gaussian absorption feature in a way that requires more Hermite–Gaussian terms
than just ψ1, whereas Theorem 1 states that (at least at low RV) a Doppler shift would not.
One could then use observations from either the Sun (e.g., Dumusque, Boisse and Santos
(2014)) or a star with high stellar activity levels (e.g., Giguere et al. (2016)) to model c1 in
equation (8) as a function of the higher-degree coefficients and remove the RV component
that is due only to stellar activity. This is possible because the Hermite–Gaussian functions
are orthogonal, and, therefore, as long as the blending between neighboring absorption fea-
tures is small, a sum of higher-degree Hermite–Gaussian functions would be approximately
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orthogonal to the sum of first-degree Hermite–Gaussian functions. These ideas are the topic
of future work.

The proposed method does have the limitation that, at high values of RV, c1 in equation
(8) is no longer the only coefficient that is significantly nonzero (see Figure 6), therefore,
the HGRV method would not work well. Fortunately, a small fraction of detected exoplanets,
none of which are Earth-like, exert such a large RV on their host star. But values of RV well
above 500 m s−1 easily arise when considering binary star systems.

An improvement that could potentially be made to the proposed method is to relax the
assumption of absorption features being Gaussian shaped. The advantage of using this as-
sumption is that its derivative is a constant multiple of a basis function in the well known
orthonormal Hermite–Gaussian basis. It is this orthogonality that potentially will allow us
to identify signals that are unique to stellar activity and, ultimately, correct for it in the RV
estimation. For M-dwarfs, however, where there is essentially no continuum and absorption
features overlap significantly, this orthogonality may not be possible. Furthermore, this as-
sumption allows us to quantify with Theorem 1 the approximation error of our model. In order
to replace the Gaussian assumption with a more general shape and potentially still model out
stellar activity, one may need to have the derivative of the new shape be a basis function in
another orthonormal basis.

Data and Python3 code associated with this work is provided as source code in the Supple-
mentary Material (Holzer (2021)) and can be found at https://github.com/parkerholzer/hgrv_
method. The HGRV method is also implemented in the open source R package rvmethod.

7. Conclusion. By using the mathematical property that Doppler-shifting a Gaussian
is nearly the same as adding a first-degree Hermite–Gaussian function, we propose a new
method for estimating a Doppler shift in the spectrum of a star. Under the assumptions that
the spectrum’s absorption features can be well approximated by a sum of Gaussians and
that the true RV is not too large in magnitude, the problem of estimating a RV in the spec-
trum can be simplified to weighted linear regression with no intercept. By testing this new
method on recently collected, high-resolution spectra from EXPRES for the star 51 Pegasi
we recover the well-known orbital parameters with an overall RMS (0.774 m s−1) below that
of the traditional CCF method (0.936 m s−1). This is only possible because the barycentric
corrected wavelengths were provided by the EXPRES team. Furthermore, simulation studies
demonstrate the ability of the HGRV method to outperform the CCF approach, giving an
RV-prevision RMS that is up to approximately 15 cm s−1 lower than the CCF. This includes
at the level of RV that is characteristic of Earth-like exoplanets orbiting Sun-like stars (i.e.,
0.1 m s−1). Unlike many other RV estimation algorithms, the HGRV method easily allows
for statistical inference on the estimated RV, does not rely heavily on interpolation, takes
account of the functional relationship in neighboring pixels and has a natural extension that
could potentially be used to model out the effects of stellar activity.
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SUPPLEMENTARY MATERIAL

Supplement to “A Hermite–Gaussian based exoplanet radial velocity estimation
method” (DOI: 10.1214/20-AOAS1406SUPPA; .pdf). We give the details and additional
analysis of the AFF algorithm, together with the mathematical proof of Theorem 1. The
model misspecification details in Section 3.4 are applied to additional absorption features,
and the estimated RV’s for 51 Pegasi are provided.

Source code for “A Hermite–Gaussian based exoplanet radial velocity estimation
method” (DOI: 10.1214/20-AOAS1406SUPPB; .zip). Python3 source code for the HGRV
theory, the AFF algorithm, and simulation studies. Data from 51 Pegasi, and code that ap-
plies the HGRV method to it, is also provided.
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